Research principles and renovation demand of old brick apartment buildings in Estonia

Arumägi, E., Kalamees, T.,

Tallinn University of Technology, Estonia

Situation of housing in Estonia

71% of population lives in apartment buildings, 20%: in detached- or in terraced house, 9%: in farmhouses;
Brick is one of the main structural material;

Today the end of the designed service life of these older buildings is close;

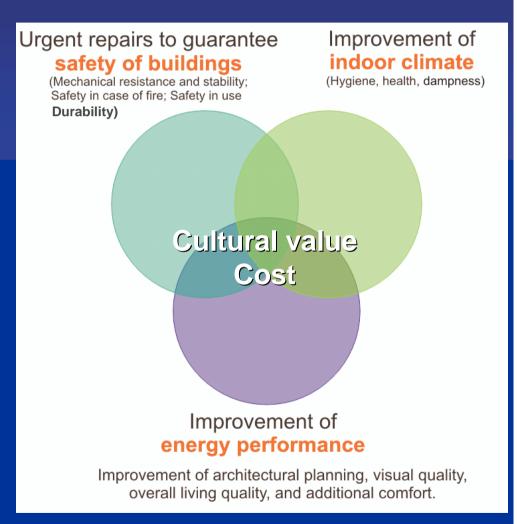
Typically each occupant is owner of the apartment → building;
 Milieu valuable areas (urban environment).

Service life of buildings / Performance criteria

Service life

- Quality and properties of components and building materials;
- Design level;
- Work execution level;
- Indoor environment;
- Outdoor environment;
- In-use conditions;
- Maintenance level;

Performance criteria:


- 6 essential requirements (CPD)
 - Mechanical resistance and stability;
 - Safety in case of fire;
 - Hygiene, safe to health and environment;
 - Safety in use;
 - Protection against noise;
 - Energy performance

The needs for renovation

Typical aspects:

1. safety of building, durability; 2. healthy indoor climate; 3. energy performance + living & visual quality Renovation and reducing energy consumption of historical buildings need to be done without losing their cultural value and identity.

The areas of research

Different areas of research

- Values: historical, cultural, architectural (milieu valuable areas);
- Structures: mechanical resistance and stability, durability, degradation of materials and components;
- Building physics, energy performance, and indoor climate;
- Technical systems: heating, ventilation, water, sewerage, electricity, etc.;
- Background information of the building (actual drawings of the building; earlier damages, previous investigations, interviews, risk assessment);

Scale of the research

- Case study (concerns one certain building or problem)
- Large scale study (concerns certain type of buildings or problems)

The aim of investigation

Investigation of the degradations

- existents of the degradations
- extent of the degradations
- grade of the degradations

Reasons of the degradations

- detection of faults in design and construction
- change of loading or alterations to a load-bearing member
- change in thermal or moisture conditions

Renovation solutions

- Values;
- Structures;
- Building physics, energy performance, and indoor climate;
- Technical systems.

Renovation demand of old brick apartment buildings in Estonia

National research project: "Technical condition and service life of Estonian brick apartment buildings" 2009-2010

- The main objectives:
 - Survey of technical condition typical brick apartment buildings;
 - Investigate the indoor climate and energy performance of buildings;
 - Determine the main demands of renovations of old brick apartment buildings.
- Characterization of studied brick apartment buildings:
 - 30 buildings, constructed between 1940 and 1990, 4-9 storey;
 - From each building one to three apartments were selected to the indoor climate and building physics studies (50 apartments);
 - All the buildings and apartments studied were in private ownership.

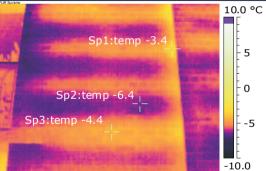
The research was financed by Credit and Export Guarantee Fund KredEx and Tallinn University of Technology

Investigation of building envelope

 survey of technical conditions of the constructions (walls, floors, roofs, balconies)

Investigation of building envelope

- survey of technical conditions of the constructions (walls, floors, roofs, balconies)
- frost resistance of the facades



Investigation of building envelope

- survey of technical conditions of the constructions (walls, floors, roofs, balconies)
- frost resistance of the facades
- thermal transmittance and
- thermal bridges of building envelope
- air tightness of building envelope

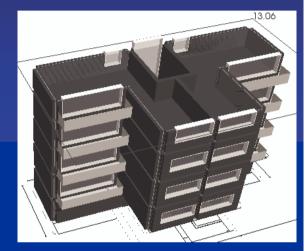
Investigation of building envelope;

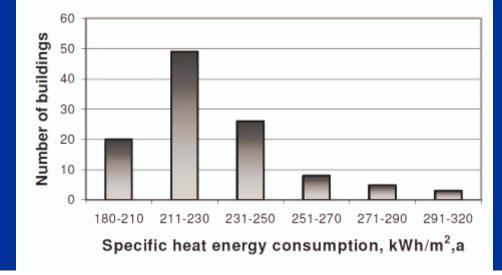
Indoor climate, hygrothermal conditions


- indoor temperature and relative humidity over one year p hour interval
- indoor CO₂, performance of ventilation
- microbiological contamination on surfaces of buildi indoor air

Data logger

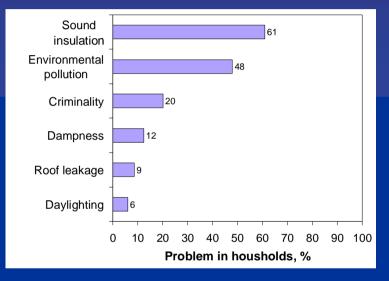
Investigation of building envelope;
 Indoor climate, hygrothermal conditions
 Conditions of building technical systems

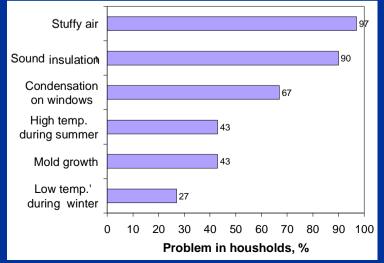




Investigation of building envelope;
Indoor climate, hygrothermal conditions
Conditions of HVAC systems
Measurement and simulation of energy use

Investigation of building envelope;
Indoor climate, hygrothermal conditions
Conditions of HVAC systems
Measurement and simulation of energy use
Questionnaire for occupants

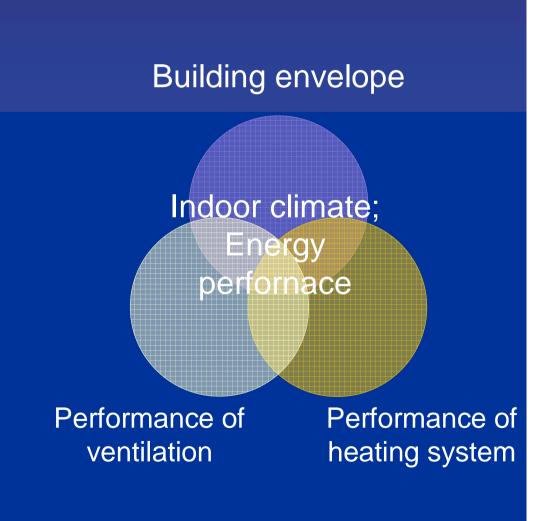

The main problems in general


Mechanical resistance and stability are not the main problems

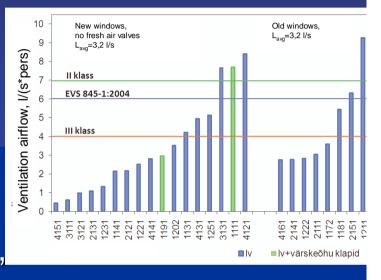
- The main technical problems are in the field of:
 - indoor climate,
 - building physics,
 - HVAC systems,
 - energy efficiency.

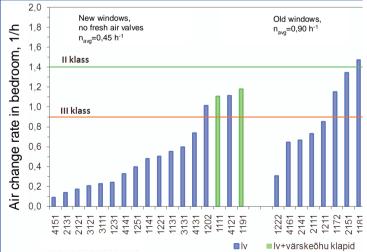
Old dwellings need improvement to meet today's requirements in a:

- healthy indoor climate, thermal comfort,
- energy performance,
- functional / architectural,
- constructional / technical.



The main needs for renovation


Improvement of indoor climate and energy performance of buildings in cold climate:


- performance of building envelope;
- performance of ventilation;
- performance of heating systems.

Typical problems of existing systems:

- natural ventilation (passive stack, window):
 - low air change,
 - low indoor air quality,
 - high moisture load,
- no heat recovery: large energy consumption,
- impossible to regulate air flows,
- air inflow from stack (wind),
- air tightness of old ventilation channels,
- the replacement of windows without renovation of ventilation:
 - smaller leakage rate,
 - more airtight building envelope.

Challenges for renovation:

- mechanical exhaust ventilation with fresh air inlets:
 - thermal comfort during winter (fresh air inlets with radiators)
 - energy performance (exhaust air heat pump \rightarrow domestic hot water)
 - air tightness of old ventilation channels
 - not suitable for combined ventilation channels

Challenges for renovation:

- mechanical exhaust ventilation
- balanced ventilation with room units:
 - where to put room units: a little space,
 - problems with sound pressure levels,
 - where to put air channels: rooms height 2.5m,
 - air flow in apartment through existing doors

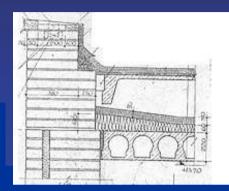
Challenges for renovation:

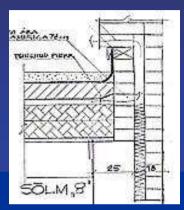
- mechanical exhaust ventilation
- balanced ventilation with room units
- acceptance of occupants:
 - how to motivate occupants for changes: "I do not want new tubes and noisy equipment in my apartment"
 - renovation works in apartments, change of internal doors?
 - cost-effective solutions are needed,
 - understanding about the importance of ventilation (customer, occupants): example-renovation without changes in ventilation: bad indoor climate

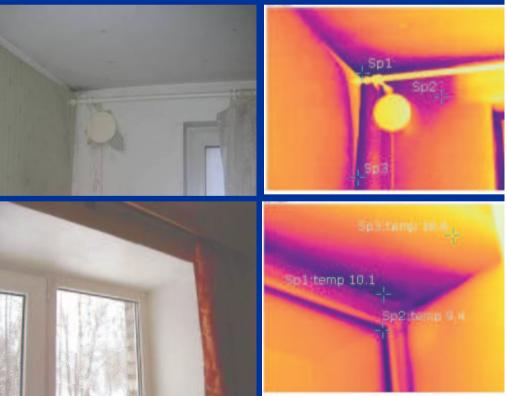
Existing problems:

high thermal transmittance:

- external walls 0.5–1.2 W/(m²·K),
- roof-ceilings 0.7–1.0 W/(m²·K),
- windows
- 2–3 W/(m²·K).


Existing problems:


- high thermal transmittance
- serious thermal bridges:

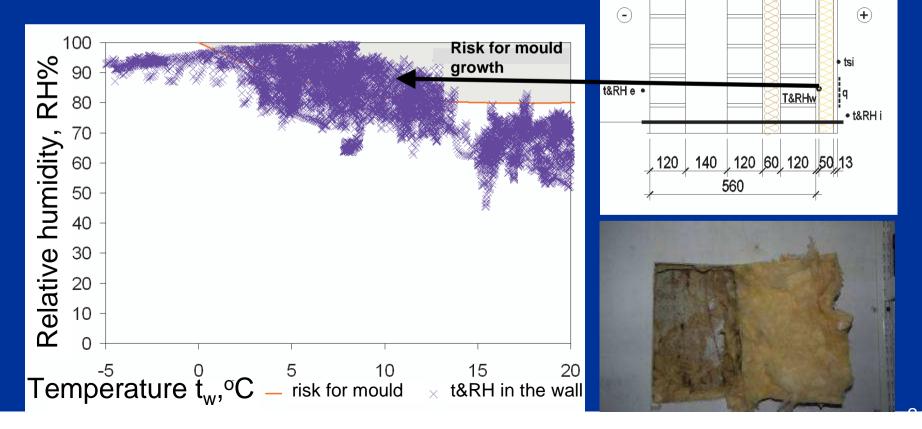

a large problem especially in old apartment buildings

mould growth and surface condensation on the internal surfaces of thermal bridges is unavoidable without:

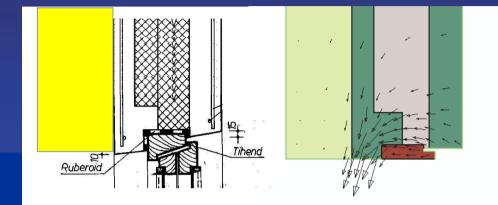
- lowering thermal transmittance,
- lowering internal humidity loads.

Existing problems:

- high thermal transmittance:
- serious thermal bridges:


also big problem in old apartment buildings already additionally insulated (windows)

- low frost resistance: a need to protect facade,
- carbonization of concrete,
- it is economically reasonable to make the additional thermal insulation for walls and roofs (strong pressure).
- cultural value should be preserved



 Internal thermal insulation is risky solution in cold climate: mould growth and condensation in the wall on the old wall surface

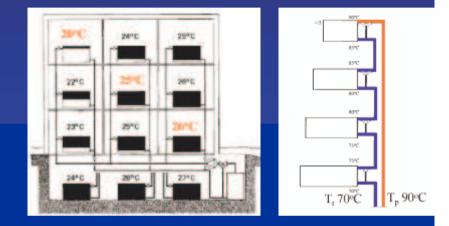
- Windows: old or new, on its original place
 - thermal bridge in connection of wall and window
 - visually bad solution

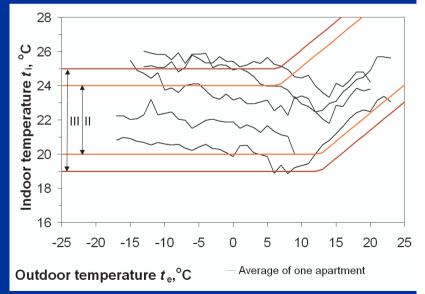
- Windows: old or new, on its original place
- Low quality: air space between old wall and new insulation;

- Windows: old or new, on its original
- Low quality: air space between old wall and new insulation;
- Loggias: thermal bridges, mould

- Windows: old or new, on its original
- Low quality: air space between old wall and new insulation;
- Loggias: thermal bridges, mould
- Drying out of constructional moisture

- Windows: old or new, on its original
- Low quality: air space between old wall and new insulation;
- Loggias: thermal bridges, mould
- Drying out of constructional moisture
- Complex renovation (ventilation + building envelope + heating systems) is not common: mould after insulation (ventilation was not renovated)


Heating systems


Typical solution:

- one-pipe heat distribution system;
- no room thermostats on radiators;

Typical problems:

- incorrect control curve of the temperature of the supply water of the heating system,
- incorrect water flow rate of the risers of the heating system,
- lack of direct room temperature control,
- difficulties to balance the one-pipe heat distribution system,
- lack of maintenance and improper modifications of the heating and ventilation systems.

Conclusion

There exists the need to renovate old brick buildings:

- to lenghten the service life of building;
- to provide healthy indoor climate;
- to lower the energy consumption of buildings (pressure from occupants and from EU (20/20/20));
- to ensure mechanical resistance and stability.
- During renovation of historical buildings we face different problems compared to new buildings;
- During renovation of historical buildings the identity should be preserved;
- There is a need for different renovation solutions where all presented aspects are taken into account;
- Example renovations with good practice, including monitoring and actual performance reports, are needed.